773 research outputs found

    Non-equilibrium wetting transition in a magnetic Eden model

    Full text link
    Magnetic Eden clusters with ferromagnetic interaction between nearest-neighbor spins are grown in a confined 2d-geometry with short range magnetic fields acting on the surfaces. The change of the growing interface curvature driven by the field and the temperature is identified as a non-equilibrium wetting transition and the corresponding phase diagram is evaluated.Comment: 11 pages, 6 figure

    Far-from-equilibrium growth of thin films in a temperature gradient

    Full text link
    The irreversible growth of thin films under far-from-equilibrium conditions is studied in (2+1)−(2+1)-dimensional strip geometries. Across one of the transverse directions, a temperature gradient is applied by thermal baths at fixed temperatures between T1T_1 and T2T_2, where T1<Tchom<T2T_1<T_c^{hom}<T_2 and Tchom=0.69(1)T_c^{hom}=0.69(1) is the critical temperature of the system in contact with an homogeneous thermal bath. By using standard finite-size scaling methods, we characterized a continuous order-disorder phase transition driven by the thermal bath gradient with critical temperature Tc=0.84(2)T_c=0.84(2) and critical exponents ν=1.53(6)\nu=1.53(6), γ=2.54(11)\gamma=2.54(11), and β=0.26(8)\beta=0.26(8), which belong to a different universality class from that of films grown in an homogeneous bath. Furthermore, the effects of the temperature gradient are analyzed by means of a bond model that captures the growth dynamics. The interplay of geometry and thermal bath asymmetries leads to growth bond flux asymmetries and the onset of transverse ordering effects that explain qualitatively the shift in the critical temperature.Comment: 4 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1207.253

    Criticality and the Onset of Ordering in the Standard Vicsek Model

    Get PDF
    Experimental observations of animal collective behavior have shown stunning evidence for the emergence of large-scale cooperative phenomena resembling phase transitions in physical systems. Indeed, quantitative studies have found scale-free correlations and critical behavior consistent with the occurrence of continuous, second-order phase transitions. The Standard Vicsek Model (SVM), a minimal model of self-propelled particles in which their tendency to align with each other competes with perturbations controlled by a noise term, appears to capture the essential ingredients of critical flocking phenomena. In this paper, we review recent finite-size scaling and dynamical studies of the SVM, which present a full characterization of the continuous phase transition through dynamical and critical exponents. We also present a complex network analysis of SVM flocks and discuss the onset of ordering in connection with XY-like spin models.Comment: 15 pages, 4 figures. To appear in Interface Focu

    Complex Network Structure of Flocks in the Standard Vicsek Model

    Full text link
    In flocking models, the collective motion of self-driven individuals leads to the formation of complex spatiotemporal patterns. The Standard Vicsek Model (SVM) considers individuals that tend to adopt the direction of movement of their neighbors under the influence of noise. By performing an extensive complex network characterization of the structure of SVM flocks, we show that flocks are highly clustered, assortative, and non-hierarchical networks with short-tailed degree distributions. Moreover, we also find that the SVM dynamics leads to the formation of complex structures with an effective dimension higher than that of the space where the actual displacements take place. Furthermore, we show that these structures are capable of sustaining mean-field-like orientationally ordered states when the displacements are suppressed, thus suggesting a linkage between the onset of order and the enhanced dimensionality of SVM flocks.Comment: 26 pages, 11 figures. To appear in J. Stat. Phy

    Random Walk Access Times on Partially-Disordered Complex Networks: an Effective Medium Theory

    Get PDF
    An analytic effective medium theory is constructed to study the mean access times for random walks on hybrid disordered structures formed by embedding complex networks into regular lattices, considering transition rates FF that are different for steps across lattice bonds from the rates ff across network shortcuts. The theory is developed for structures with arbitrary shortcut distributions and applied to a class of partially-disordered traversal enhanced networks in which shortcuts of fixed length are distributed randomly with finite probability. Numerical simulations are found to be in excellent agreement with predictions of the effective medium theory on all aspects addressed by the latter. Access times for random walks on these partially disordered structures are compared to those on small-world networks, which on average appear to provide the most effective means of decreasing access times uniformly across the network.Comment: 12 pages, 8 figures; added new results and discussion; added appendix on numerical procedures. To appear in PR

    Nonequilibrium Critical Behavior of Magnetic Thin Films Grown in a Temperature Gradient

    Get PDF
    We investigate the irreversible growth of (2+1)−(2+1)-dimensional magnetic thin films under the influence of a transverse temperature gradient, which is maintained by thermal baths across a direction perpendicular to the direction of growth. Therefore, different longitudinal layers grow at different temperatures between T1T_1 and T2T_2, where T1<Tchom<T2T_1<T_c^{hom}<T_2 and Tchom=0.69(1)T_c^{hom}=0.69(1) is the critical temperature of films grown in homogeneous thermal baths. We find a far-from-equilibrium continuous order-disorder phase transition driven by the thermal bath gradient. We characterize this gradient-induced critical behavior by means of standard finite-size scaling procedures, which lead to the critical temperature Tc=0.84(2)T_c=0.84(2) and a new universality class consistent with the set of critical exponents ν=3/2\nu=3/2, γ=5/2\gamma=5/2, and β=1/4\beta=1/4. In order to gain further insight into the effects of the temperature gradient, we also develop a bond model that captures the magnetic film's growth dynamics. Our findings show that the interplay of geometry and thermal bath asymmetries leads to growth bond flux asymmetries and the onset of transverse ordering effects that explain qualitatively the shift observed in the critical temperature. The relevance of these mechanisms is further confirmed by a finite-size scaling analysis of the interface width, which shows that the growing sites of the system define a self-affine interface.Comment: 26 pages, 12 figures. To appear in JSTA
    • …
    corecore